3.508 \(\int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx\)

Optimal. Leaf size=257 \[ \frac {\sqrt {-x^3-1}}{x}-\frac {\sqrt {-x^3-1}}{x-\sqrt {3}+1}-\frac {\sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{2 \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

[Out]

(-x^3-1)^(1/2)/x-(-x^3-1)^(1/2)/(1+x-3^(1/2))-1/3*(1+x)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*2
^(1/2)*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)+1/2*3^(1/4)*(1+
x)*EllipticE((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(
1/2))/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 257, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {325, 304, 219, 1879} \[ \frac {\sqrt {-x^3-1}}{x}-\frac {\sqrt {-x^3-1}}{x-\sqrt {3}+1}-\frac {\sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{2 \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[-1 - x^3]),x]

[Out]

Sqrt[-1 - x^3]/x - Sqrt[-1 - x^3]/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1
 - Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(2*Sqrt[-((1 + x)/(
1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3]) - (Sqrt[2]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[ArcS
in[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-
1 - x^3])

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 304

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, -Dist[(S
qrt[2]*s)/(Sqrt[2 - Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a
+ b*x^3], x], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1879

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 + Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 + Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 - Sqrt[3])*s + r*x)), x
] + Simp[(3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[-((s
*(s + r*x))/((1 - Sqrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx &=\frac {\sqrt {-1-x^3}}{x}+\frac {1}{2} \int \frac {x}{\sqrt {-1-x^3}} \, dx\\ &=\frac {\sqrt {-1-x^3}}{x}+\frac {1}{2} \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx-\sqrt {\frac {1}{2} \left (2+\sqrt {3}\right )} \int \frac {1}{\sqrt {-1-x^3}} \, dx\\ &=\frac {\sqrt {-1-x^3}}{x}-\frac {\sqrt {-1-x^3}}{1-\sqrt {3}+x}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{2 \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}-\frac {\sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 40, normalized size = 0.16 \[ -\frac {\sqrt {x^3+1} \, _2F_1\left (-\frac {1}{3},\frac {1}{2};\frac {2}{3};-x^3\right )}{x \sqrt {-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[-1 - x^3]),x]

[Out]

-((Sqrt[1 + x^3]*Hypergeometric2F1[-1/3, 1/2, 2/3, -x^3])/(x*Sqrt[-1 - x^3]))

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-x^{3} - 1}}{x^{5} + x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^3 - 1)/(x^5 + x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {-x^{3} - 1} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-x^3 - 1)*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 174, normalized size = 0.68 \[ \frac {\sqrt {-x^{3}-1}}{x}-\frac {i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-x^3-1)^(1/2),x)

[Out]

(-x^3-1)^(1/2)/x-1/3*I*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(
x-1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*((3/2+1/2*I*3^(1/2))*EllipticE(1/3*3^(1/2)*(I*(x-1/2-1/2*I*
3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))-EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*
3^(1/2))^(1/2),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {-x^{3} - 1} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-x^3 - 1)*x^2), x)

________________________________________________________________________________________

mupad [B]  time = 1.03, size = 244, normalized size = 0.95 \[ \frac {\sqrt {-x^3-1}}{x}-\frac {\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(- x^3 - 1)^(1/2)),x)

[Out]

(- x^3 - 1)^(1/2)/x - ((((3^(1/2)*1i)/2 - 1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1
/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*ellipticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/
2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)*1i)/2 + 3/2)*(x^3 + 1)^(1/2)*((x + (3^(
1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x +
1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2)
 + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________

sympy [A]  time = 1.72, size = 34, normalized size = 0.13 \[ - \frac {i \Gamma \left (- \frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, \frac {1}{2} \\ \frac {2}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 x \Gamma \left (\frac {2}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-x**3-1)**(1/2),x)

[Out]

-I*gamma(-1/3)*hyper((-1/3, 1/2), (2/3,), x**3*exp_polar(I*pi))/(3*x*gamma(2/3))

________________________________________________________________________________________